Hampir Tidak Ada Bilangan Rasional, Tapi…

Sebelum mulai, saya mau minta kalian pilih satu buah bilangan apa saja yang terletak di antara 0 dan 1 (ini berarti 0 dan 1 tidak boleh dipilih ya). Kalau sudah, diingat-ingat saja. Gak akan saya apa-apain kok.

Kenapa saya minta seperti itu? Kalau saya minta sebutkan satu bilangan di antara 0 dan 1, pasti kebanyakan akan jawab \frac{1}{2}. Mungkin ada beberapa yang kreatif jawabnya \frac{5}{6}. Lebih kreatif lagi kalau jawabnya \frac{354566}{583948}. Tapi jauh lebih kreatif orang yang jawab \frac{1}{2}\sqrt{2} atau \frac{\pi}{4} atau \log(2). Nah, seberapa kreatifkah kalian? 😛

Faktanya, hampir setiap orang yang diminta untuk berikan satu angka di antara 0 dan 1, pasti akan memberikan jawaban berupa bilangan rasional. Mungkin karena bilangan-bilangan itu yang dekat dengan mereka. Mungkin cuma anak matematika yang akan jawab \frac{\pi}{4} atau \ln(2), karena mereka lebih sering berurusan dengan bilangan-bilangan semacam itu ketimbang anak-anak lainnya.

Sekarang, saya mau berikan suatu fakta yang mungkin agak ironis: di kumpulan bilangan real, hampir tidak ada bilangan rasional. Artinya, jumlah bilangan irasional jauh, jauh, jauh lebih banyak daripada bilangan rasional. Lebih mengejutkan lagi, dengan menganggap semua bilangan di antara 0 dan 1 terdistribusi secara merata, kalau kita harus mengambil satu angka dari antara 0 dan 1, katakanlah a \in (0,1), maka peluang bahwa a bilangan rasional adalah 0. Dengan kata lain, peluang bahwa a bilangan irasional adalah 1.

Buktinya tidaklah sederhana. Bahkan tampak aneh dan tidak wajar ya? Jelas-jelas dari interval (0,1) bilangan rasional ada banyak. Ambil saja \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots yang belum lagi ditambah \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \ldots. Itu baru yang bentuknya \frac{1}{n}, belum ditambah dengan yang bentuknya lebih ‘tidak karuan’ seperti \frac{11}{5476} dan lain sebagainya. Mau ditulis semua juga tidak mungkin saking banyaknya, kan? Bagaimana mungkin kalau kita mengambil satu bilangan dari antara 0 dan 1, peluang terambil bilangan rasional adalah 0?

Penjelasan di bawah ini sudah masuk ke ranah yang lebih matematis. Coba dibaca saja, tidak harus terlalu dipahami. Buat yang memang tidak bisa paham, percaya sajalah :D. Mungkin bisa langsung lompat ke dua paragraf terakhir.

Untuk menjelaskan ini, kita butuh suatu konsep yang disebut ukuran (measure). Secara kasar, namanya juga ukuran, pasti ia dibutuhkan untuk memberikan gambaran seberapa besar suatu objek. Nah dalam konteks ini, predikat ukuran melekat pada himpunan. Jadi, kita bisa mengukur seberapa besar suatu himpunan.

Secara intuitif, kalau kita punya selang I = (0,1), ukuran himpunan ini adalah panjangnya kan? Jadi ukurannya 1. Sekarang, kalau kita punya persegi panjang di bidang berdimensi dua R = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 2, 0 \le y \le 3\}, ukuran himpunan ini secara intuitif adalah luasnya, yaitu 6. Kalau kita punya kubus di ruang berdimensi tiga Q = \{(x,y,z) \in \mathbb{R}^3 \mid 0 \le x \le 2, 0 \le y \le 2, 0 \le z \le 2\}, ukuran himpunan ini secara intuitif adalah volumenya, yaitu 8. Ukuran memang dipakai untuk memperumum konsep panjang (di ruang berdimensi satu), luas (di ruang berdimensi dua), dan volume (di ruang berdimensi tiga). Memperumum di sini maksudnya apa? Maksudnya adalah kalau kita ingin bekerja di ruang berdimensi n, kita tetap bisa punya suatu alat untuk mengukur seberapa besar suatu himpunan.

Ada banyak jenis ukuran, namun yang populer salah satunya adalah ukuran Lebesgue. Sekarang, sedikit lebih formal. Misalkan m adalah ukuran Lebesgue, maka m adalah suatu pemetaan yang membawa himpunan tak kosong ke suatu bilangan real non-negatif yang diperluas \mathbb{R}_+^{\star} = \mathbb{R} \cup \{\infty\}, yang kelak dinamakan ukuran himpunan ini. Dari penjelasan sebelumnya, kita memperbolehkan ukuran suatu himpunan tak berhingga.

Sekarang, mari bicara dalam domain bilangan real \mathbb{R} saja. Jika I = (a,b), definisikan m(I) = b-a. Sekarang, bagaimana untuk kelas himpunan yang lebih besar? Sekarang, coba pandang himpunan (0,1) \cup (2,3). Masuk akal kan kalau kita mendefinisikan m((0,1) \cup (2,3)) = m((0,1)) + m((2,3)) = 1 + 1 = 2? Ini sudah membuat lebih banyak himpunan bisa diukur. Sekarang, berhingga banyaknya himpunan-himpunan yang saling disjoin (yaitu tidak memiliki irisan) bisa dihitung ukurannya.

Secara umum, jika a_1 < b_1 < a_2 < b_2 < \ldots < a_n < b_n, maka

m\left(\displaystyle\bigcup_{i = 1}^n (a_i, b_i)\right) = \displaystyle\sum_{i = 1}^n m((a_i, b_i)).

Bahkan, ini kita bisa perumum lagi untuk kasus terhitung banyaknya himpunan-himpunan yang saling disjoin, yaitu jika a_1 < b_1 < a_2 < b_2 < \ldots < a_n < b_n < \ldots, maka

m\left(\displaystyle\bigcup_{i = 1}^{\infty} (a_i, b_i)\right) = \displaystyle\sum_{i = 1}^{\infty} m((a_i, b_i)).

Ekspresi terakhir tidaklah masalah karena ukuran suatu himpunan boleh tak berhingga.

Sekarang, coba kita formalkan. Jika E suatu himpunan terukur (yaitu yang ukurannya terdefinisi dengan baik), maka

  1. m(E) \ge 0.
  2. Jika E_1, E_2, \ldots adalah subhimpunan dari E yang saling disjoin, maka m\left(\displaystyle\bigcup_{i = 1}^{\infty} E_i\right) = \displaystyle\sum_{i = 1}^{\infty} m(E_i).

Dari dua sifat di atas kita bisa dapatkan fakta ini.

Fakta: Jika A dan B adalah dua himpunan terukur dan A \subset B, maka m(A) \le m(B). Ini bisa didapat dengan menggunakan fakta bahwa B = A \cup (B\setminus A), dan karena A dan B\setminus A adalah dua himpunan yang saling disjoin, maka m(B) = m(A) + m(B\setminus A) \ge m(A).

Sekarang, kita ingin menghitung ukuran suatu singleton, yaitu himpunan yang terdiri dari satu anggota. Misalkan A = \{a\} dan B = (a - \frac{\epsilon}{2}, a + \frac{\epsilon}{2}), untuk suatu \epsilon > 0. Jelas A \subset B dan kita tahu bahwa m(B) = \epsilon.

Karenanya, 0 \le m(A) \le m(B) = \epsilon. Tapi kita bisa pilih \epsilon yang sekecil-kecilnya, sehingga ini memberikan m(A) = 0. Jadi ukuran dari suatu himpunan singleton adalah 0.

Sekarang, perhatikan himpunan bilangan rasional \mathbb{Q}. Karena \mathbb{Q} terhitung, maka kita bisa enumerasi \mathbb{Q} = \{q_i \mid i \in \mathbb{N}\}. Karenanya,

m(\mathbb{Q}) = m\left(\displaystyle\bigcup_{i = 1}^{\infty} \{q_i\}\right) = \displaystyle\sum_{i = 1}^{\infty} m(\{q_i\}) = \displaystyle\sum_{i=1}^{\infty} 0 = 0.

Jadi, ukuran bilangan rasional adalah nol! Kalau kita batasi diri bekerja pada bilangan rasional yang terletak di antara 0 dan 1, yaitu \mathbb{Q} \cap (0,1), maka dengan menggunakan fakta di atas bisa didapatkan m(\mathbb{Q} \cap (0,1)) = 0.

Apa artinya ukuran suatu himpunan 0? Mengingat bahwa ukuran adalah perumuman konsep panjang, luas, atau volume, kita bisa bilang kalau himpunan yang berukuran 0 pada dasarnya dapat diabaikan; hampir tidak ada. Kenapa hampir? Ya karena sebenarnya mereka ada. Kita bekerja dengan bilangan rasional dari SD, kok. 😛

Kembali ke permasalahan di atas. Dari penjelasan secara matematis di atas (semoga tidak terlalu sulit untuk dipahami ya 😦 ) dapat disimpulkan bahwa bilangan rasional hampir tidak ada. Kalau kita kaitkan dengan peluang (yang sebenarnya juga adalah ukuran), kita bisa bilang bahwa peluang mengambil bilangan rasional dari antara 0 dan 1 adalah 0, karena ukuran bilangan rasional adalah 0. Artinya, kalau kita harus mengambil satu bilangan yang terdistribusi merata dari antara 0 dan 1, maka pasti bilangan tersebut adalah bilangan irasional.

Mengingat hampir setiap orang yang diminta untuk mengambil suatu bilangan dari antara 0 dan 1 akan menjawab dengan bilangan rasional, maka sebenarnya ini sangat ironis, kan?

One thought on “Hampir Tidak Ada Bilangan Rasional, Tapi…

  1. Mencoba berargumen sedikit ya. Sejauh yang saya pahami, suatu kejadian berpeluang 1 artinya “setidaknya hampir pasti terjadi”, bukan pasti terjadi, demikian pula kejadian berpeluang 0 artinya “setidaknya hampir tidak mungkin”, sehingga kejadian mengambil bilangan rasional di antara 0 dan 1 belum pasti terjadi.

    Jadi menurut saya kalimat terakhir di paragraf kedua dari terakhir kurang tepat. Kok dibilang “pasti”, padahal buktinya kita bisa memeroleh bilangan rasional. Letak “keanehan”nya sebaiknya dipindahkan ke fakta bahwa ternyata kejadian berpeluang 0 bukan artinya tidak mungkin, dan kejadian berpeluang 1 bukan artinya pasti.

    Nice post btw!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s